

Solve each problem.

1) A carpenter has accumulated a large collection of nails, screws and bolts, which he had randomly thrown together into a bucket. Later he wanted to estimate how many of each he had. To do this he grabbed a handful from the bucket. His results are shown below.

Sample #	1	2	3	4	5	6	7	8
nails	2	3	2	1	2	3	4	2
screws	5	3	1	5	4	3	1	1
bolts	5	1	1	5	2	3	1	1

Based on the information presented can you infer anything about the relationship between the number of nails, screws and bolts in the bucket?

Based on the information presented and the small samples gathered it is impossible to make any meaningful assumptions.

2) An ad agency was trying to determine if customers liked blue, green or red packaging better. To do this they took a sample of customers and polled them. The results are shown below:

Sample #	1	2
Red	1	4
Green	4	4
Blue	0	4

Based on the information presented can you infer anything about which color is liked the best?

Based on the information presented and the small samples gathered it is impossible to make any meaningful assumptions.

3) A car company was trying to figure out if more men or more women purchased yellow cars. To do this they polled all the customer who bought a yellow car in the last month. Their results are shown below:

Sample #	1	2	3	4	5
Men	18	21	21	22	20
Women	22	20	21	18	19

Based on the information presented what can you infer about who bought yellow cars?

Because of the very small discrepancy in the quantities it is unlikely any deduction can be made about who bought more yellow cars.

Solve each problem.

1) A carpenter has accumulated a large collection of nails, screws and bolts, which he had randomly thrown together into a bucket. Later he wanted to estimate how many of each he had. To do this he grabbed a handful from the bucket. His results are shown below.

Sample #	1	2	3	4	5	6	7	8
nails	2	3	2	1	2	3	4	2
screws	5	3	1	5	4	3	1	1
bolts	5	1	1	5	2	3	1	1

Based on the information presented can you infer anything about the relationship between the number of nails, screws and bolts in the bucket?

Based on the information presented and the small samples gathered it is impossible to make any meaningful assumptions.

2) An ad agency was trying to determine if customers liked blue, green or red packaging better. To do this they took a sample of customers and polled them. The results are shown below:

Sample #	1	2
Red	1	4
Green	4	4
Blue	0	4

Based on the information presented can you infer anything about which color is liked the best?

Based on the information presented and the small samples gathered it is impossible to make any meaningful assumptions.

3) A car company was trying to figure out if more men or more women purchased yellow cars. To do this they polled all the customer who bought a yellow car in the last month. Their results are shown below:

Sample #	1	2	3	4	5
Men	18	21	21	22	20
Women	22	20	21	18	19

Based on the information presented what can you infer about who bought yellow cars?

Because of the very small discrepancy in the quantities it is unlikely any deduction can be made about who bought more yellow cars.