Determine which choice shows the expression used to solve the problem.

1) Edward is helping to put away books. If he has six books to put away and each shelf can hold two books how many shelves will he need?
A. $6+2$
B. 6-2
C. 6×2
D. $6 \div 2$
2) Sarah was practicing for a marathon. She practiced for seven days, running five miles each day. How many miles did Sarah run altogether?
A. $7+5$
B. 7-5
C. 7×5
D. $7 \div 5$
3) Olivia was selling some of her old toys at a garage sale. She started out with fourteen toys and sold five of them. How many does she have left?
A. $14+5$
B. 14-5
C. 14×5
D. $14 \div 5$
4) For a potluck lunch Faye brought five bottles of soda. If everyone only drank two of the sodas, how many did she have to take back home?
A. $5+2$
B. 5-2
C. 5×2
D. $5 \div 2$
5) Luke was making origami swans for his friends. Before lunch he made two swans and after lunch he made three more. How many swans did he make all together?
A. $2+3$
B. 3-2
C. 2×3
D. $3 \div 2$
6) A pet store had eight cages of snakes with nine snakes in each cage. How many snakes did the pet store have total?
A. $8+9$
B. 9-8
C. 8×9
D. $9 \div 8$
7) Mike was reading through his favorite book series. The first week he read seven different books. The next week he read eight books. How many books did he read total?
A. $7+8$
B. 8-7
C. 7×8
D. $8 \div 7$
8) Kaleb was making ice using ice trays. He originally had eight ice cubes. But made two more cubes. How many ice cubes did he have total?
A. $8+2$
B. 8-2
C. 8×2
D. $8 \div 2$
9) Ned had fifteen friends over for his birthday party. Later six of his friends had to go home. How many friends were left?
A. $15+6$
B. 15-6
C. 15×6
D. $15 \div 6$
10) An industrial machine made forty-eight shirts. It can make a eight shirts a minute. How many minutes was the machine working?
A. $48+8$
B. $48-8$
C. 48×8
D. $48 \div 8$

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Determine which choice shows the expression used to solve the problem.

1) Edward is helping to put away books. If he has six books to put away and each shelf can hold two books how many shelves will he need?
A. $6+2$
B. 6-2
C. 6×2
D. $6 \div 2$
2) Sarah was practicing for a marathon. She practiced for seven days, running five miles each day. How many miles did Sarah run altogether?
A. $7+5$
B. 7-5
C. 7×5
D. $7 \div 5$
3) Olivia was selling some of her old toys at a garage sale. She started out with fourteen toys and sold five of them. How many does she have left?
A. $14+5$
B. 14-5
C. 14×5
D. $14 \div 5$
4) For a potluck lunch Faye brought five bottles of soda. If everyone only drank two of the sodas, how many did she have to take back home?
A. $5+2$
B. 5-2
C. 5×2
D. $5 \div 2$
5) Luke was making origami swans for his friends. Before lunch he made two swans and after lunch he made three more. How many swans did he make all together?
A. $2+3$
B. 3-2
C. 2×3
D. $3 \div 2$
6) A pet store had eight cages of snakes with nine snakes in each cage. How many snakes did the pet store have total?
A. $8+9$
B. 9-8
C. 8×9
D. $9 \div 8$
7) Mike was reading through his favorite book series. The first week he read seven different books. The next week he read eight books. How many books did he read total?
A. $7+8$
B. 8-7
C. 7×8
D. $8 \div 7$
8) Kaleb was making ice using ice trays. He originally had eight ice cubes. But made two more cubes. How many ice cubes did he have total?
A. $8+2$
B. 8-2
C. 8×2
D. $8 \div 2$
9) Ned had fifteen friends over for his birthday party. Later six of his friends had to go home. How many friends were left?
A. $15+6$
B. 15-6
C. 15×6
D. $15 \div 6$
10) An industrial machine made forty-eight shirts. It can make a eight shirts a minute. How many minutes was the machine working?
A. $48+8$
B. $48-8$
C. 48×8
D. $48 \div 8$

Answers

1. \mathbf{D}
2. C
3. \qquad
4 \qquad
4. $\quad \mathbf{A}$
5. C
6. \mathbf{A}
7. \mathbf{A}
8.

10. \qquad

