Solve each problem.

1) A bag of strawberry candy takes $1 / 2$ ounces of strawberries to make. If you have $3 / 3$ bags,
how many ounces of strawberries did it take to make them?
2) A new washing machine used $2 \frac{2}{5}$ gallons of water per full load to clean clothes. If Sam washed $1 \frac{1}{4}$ loads of clothes, how many gallons of water would be used?
3) George had a lump of silly putty that was $1 / 2$ inches long. If he stretched it out to $1 \frac{2}{3}$ times its current length how long would it be?
4) Paige needed a piece of string to be exactly $2 \frac{1}{3}$ feet long. If the string she has is $3 / 5$ times as long as it should be, how long is the string?
5) A bottle of sugar syrup soda had $1 \frac{1}{2}$ grams of sugar in it. If Tom drank 1 full bottles and $2 / 5$ of a bottle, how many grams of sugar did he drink?
6) Janet had 2 full cement blocks and one that was $2 / 3$ the normal size. If each full block weighed $1 \frac{1}{3}$ pounds, what is the weight of the blocks Janet has?
7) A doctor told his patient to drink 2 full cups and $3 / 5$ of a cup of medicine over a week. If each full cup was $1 \frac{1}{2}$ pints, how much is he going to drink over the week?
8) An old road was $3 / 5$ miles long. After a renovation it was $2 \frac{3}{4}$ times as long. How long was the road after the renovation?
9) A batch of chicken required $1 / 4$ cups of flour. If a fast food restaurant was making $2 \frac{1}{3}$ batches, how much flour would they need?
10) A bottle of home-made cleaning solution took $1 \frac{3}{4}$ milliliters of lemon juice. If Carol wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
11) Debby can read $3 / 5$ pages of a book in a minute. If she read for $3 \frac{1}{2}$ minutes, how much would she have read?
12) A single box of thumb tacks weighed $2 \frac{1}{3}$ ounces. If a teacher had $1 \frac{1}{2}$ boxes, how much would their combined weight be?
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Solve each problem.

1) A bag of strawberry candy takes $1 \frac{1}{2}$ ounces of strawberries to make. If you have $3 / 3$ bags, how many ounces of strawberries did it take to make them?
2) A new washing machine used $2 \frac{2}{5}$ gallons of water per full load to clean clothes. If Sam washed $1 \frac{1}{4}$ loads of clothes, how many gallons of water would be used?
3) George had a lump of silly putty that was $1 \frac{1}{2}$ inches long. If he stretched it out to $1 \frac{2}{3}$ times its current length how long would it be?
4) Paige needed a piece of string to be exactly $2 / 3$ feet long. If the string she has is $3 / 5$ times as long as it should be, how long is the string?
5) A bottle of sugar syrup soda had $1 \frac{1}{2}$ grams of sugar in it. If Tom drank 1 full bottles and $2 / 5$ of a bottle, how many grams of sugar did he drink?
6) Janet had 2 full cement blocks and one that was $\frac{2}{3}$ the normal size. If each full block weighed $1 \frac{1}{3}$ pounds, what is the weight of the blocks Janet has?
7) A doctor told his patient to drink 2 full cups and $3 / 5$ of a cup of medicine over a week. If each full cup was $1 \frac{1}{2}$ pints, how much is he going to drink over the week?
8) An old road was $3 / 5$ miles long. After a renovation it was $2 \frac{3}{4}$ times as long. How long was the road after the renovation?
9) A batch of chicken required $13 / 4$ cups of flour. If a fast food restaurant was making $2 \frac{1}{3}$ batches, how much flour would they need?
10) A bottle of home-made cleaning solution took $1 \frac{3}{4}$ milliliters of lemon juice. If Carol wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
11) Debby can read $3 / 5$ pages of a book in a minute. If she read for $3 / 2$ minutes, how much would she have read?
12) A single box of thumb tacks weighed $2 \frac{1}{3}$ ounces. If a teacher had $1 \frac{1}{2}$ boxes, how much would their combined weight be?

Answers

1. \qquad
2. \qquad
3. \qquad
4.

$\frac{8^{6} / 15}{2 \%}$
6.
3%
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Solve each problem.

$2 \frac{1}{10}$	$3 / 20$	5%	$3^{0} / 10$	$3 / 9$
$2 \frac{3}{6}$	$9^{7} / 20$	$4 \frac{5}{12}$	$4^{3} / 8$	$8 \% / 15$

1) A bag of strawberry candy takes $1 / 2$ ounces of strawberries to make. If you have $3 / 3$ bags, how many ounces of strawberries did it take to make them?
2) A new washing machine used $2 \frac{2}{5}$ gallons of water per full load to clean clothes. If Sam washed $1 \frac{1}{4}$ loads of clothes, how many gallons of water would be used?
3) George had a lump of silly putty that was $1 / 2$ inches long. If he stretched it out to $1 \frac{2}{3}$ times its current length how long would it be?
4) Paige needed a piece of string to be exactly $2 / \frac{1}{3}$ feet long. If the string she has is $3 / 5$ times as long as it should be, how long is the string?
5) A bottle of sugar syrup soda had $1 \frac{1}{2}$ grams of sugar in it. If Tom drank 1 full bottles and $2 / 5$ of a bottle, how many grams of sugar did he drink?
6) Janet had 2 full cement blocks and one that was $2 / 3$ the normal size. If each full block weighed $1 \frac{1}{3}$ pounds, what is the weight of the blocks Janet has?
7) A doctor told his patient to drink 2 full cups and $3 / 5$ of a cup of medicine over a week. If each full cup was $1 \frac{1}{2}$ pints, how much is he going to drink over the week?
8) An old road was $3 / 5$ miles long. After a renovation it was $2 \frac{3}{4}$ times as long. How long was the road after the renovation?
9) A batch of chicken required $1 / 4$ cups of flour. If a fast food restaurant was making $2 \frac{1}{3}$ batches, how much flour would they need?
10) A bottle of home-made cleaning solution took $1 / 4$ milliliters of lemon juice. If Carol wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
