Solve each problem.

1) Tom had a lump of silly putty that was $3 \frac{1}{3}$ inches long. If he stretched it out to $3 \frac{2}{3}$ times its current length how long would it be?
2) Janet needed a piece of string to be exactly $1 \frac{2}{5}$ feet long. If the string she has is $2 \frac{2}{4}$ times as long as it should be, how long is the string?
3) A bottle of home-made cleaning solution took $3 \frac{1}{2}$ milliliters of lemon juice. If Tiffany wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
4) Isabel can read $2 \frac{1}{3}$ pages of a book in a minute. If she read for $1 \frac{1}{3}$ minutes, how much would she have read?
5) A doctor told his patient to drink 1 full cups and $3 / 4$ of a cup of medicine over a week. If each full cup was $3 \frac{1}{2}$ pints, how much is he going to drink over the week?
6) A new washing machine used $2 \frac{1}{4}$ gallons of water per full load to clean clothes. If Sam washed $1 \frac{2}{5}$ loads of clothes, how many gallons of water would be used?
7) A bottle of sugar syrup soda had $13 / 4$ grams of sugar in it. If Henry drank 2 full bottles and $1 / 4$ of a bottle, how many grams of sugar did he drink?
8) Haley had 2 full cement blocks and one that was $\frac{1}{2}$ the normal size. If each full block weighed $1 \frac{1}{2}$ pounds, what is the weight of the blocks Haley has?
9) An old road was $3 / 5$ miles long. After a renovation it was $1 / 5$ times as long. How long was the road after the renovation?
10) A batch of chicken required $2 \frac{1}{5}$ cups of flour. If a fast food restaurant was making $1 \frac{1}{3}$ batches, how much flour would they need?
11) A bag of strawberry candy takes $3 / 2$ ounces of strawberries to make. If you have $1 \frac{2}{3}$ bags, how many ounces of strawberries did it take to make them?
12) A baby frog weighed $1 \frac{1}{3}$ ounces. After a month it was $2 \frac{1}{2}$ times as heavy, how much did the frog weigh after a month?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Solve each problem.

1) Tom had a lump of silly putty that was $3 \frac{1}{3}$ inches long. If he stretched it out to $3 \frac{2}{3}$ times its current length how long would it be?
2) Janet needed a piece of string to be exactly $1 \frac{2}{5}$ feet long. If the string she has is $2 \frac{2}{4}$ times as long as it should be, how long is the string?
3) A bottle of home-made cleaning solution took $3 \frac{1}{2}$ milliliters of lemon juice. If Tiffany wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
4) Isabel can read $2 \frac{1}{3}$ pages of a book in a minute. If she read for $1 / 3$ minutes, how much would she have read?
5) A doctor told his patient to drink 1 full cups and $3 / 4$ of a cup of medicine over a week. If each full cup was $3 \frac{1}{2}$ pints, how much is he going to drink over the week?
6) A new washing machine used $2 \frac{1}{4}$ gallons of water per full load to clean clothes. If Sam washed $1 \frac{2}{5}$ loads of clothes, how many gallons of water would be used?
7) A bottle of sugar syrup soda had $13 / 4$ grams of sugar in it. If Henry drank 2 full bottles and $1 / 4$ of a bottle, how many grams of sugar did he drink?
8) Haley had 2 full cement blocks and one that was $1 / 2$ the normal size. If each full block weighed $1 \frac{1}{2}$ pounds, what is the weight of the blocks Haley has?
9) An old road was $3 / 5$ miles long. After a renovation it was $1 / 5$ times as long. How long was the road after the renovation?
10) A batch of chicken required $2 \frac{1}{5}$ cups of flour. If a fast food restaurant was making $1 / \frac{1}{3}$ batches, how much flour would they need?
11) A bag of strawberry candy takes $3 / 2$ ounces of strawberries to make. If you have $1 \frac{2}{3}$ bags, how many ounces of strawberries did it take to make them?
12) A baby frog weighed $1 \frac{1}{3}$ ounces. After a month it was $2 \frac{1}{2}$ times as heavy, how much did the frog weigh after a month?
1.
2. \qquad
3. \qquad
4.
5. $31 / 9$
6. \qquad
7. \qquad
8.

8.

9. \qquad
10. \qquad
11. \qquad
12. \qquad

Solve each problem.

$8^{3} / 4$	$6^{1} / 8$	$2^{14} / 15$	$3^{15} / 16$	$3 / 9$
$3^{3} / 20$	$3^{10} / 20$	$12^{2} / 9$	$5^{8} / 25$	$3^{3} / 4$

10) A batch of chicken required $2 / \frac{1}{5}$ cups of flour. If a fast food restaurant was making $1 / \frac{1}{3}$ batches, how much flour would they need?
11) Tom had a lump of silly putty that was $3 \frac{1}{3}$ inches long. If he stretched it out to $3 \frac{2}{3}$ times its current length how long would it be?
12) Janet needed a piece of string to be exactly $1 \frac{2}{5}$ feet long. If the string she has is $2 \frac{2}{4}$ times as long as it should be, how long is the string?
13) A bottle of home-made cleaning solution took $3 \frac{1}{2}$ milliliters of lemon juice. If Tiffany wanted to make $2 \frac{1}{2}$ bottles, how many milliliters of lemon juice would she need?
14) Isabel can read $2 \frac{1}{3}$ pages of a book in a minute. If she read for $1 \frac{1}{3}$ minutes, how much would she have read?
15) A doctor told his patient to drink 1 full cups and $3 / 4$ of a cup of medicine over a week. If each full cup was $3 \frac{1}{2}$ pints, how much is he going to drink over the week?
16) A new washing machine used $2 \frac{1}{4}$ gallons of water per full load to clean clothes. If Sam washed $1 \frac{2}{5}$ loads of clothes, how many gallons of water would be used?
17) A bottle of sugar syrup soda had $13 / 4$ grams of sugar in it. If Henry drank 2 full bottles and $1 / 4$ of a bottle, how many grams of sugar did he drink?
18) Haley had 2 full cement blocks and one that was $\frac{1}{2}$ the normal size. If each full block weighed $1 \frac{1}{2}$ pounds, what is the weight of the blocks Haley has?
19) An old road was $3 / 5$ miles long. After a renovation it was $1 / 5$ times as long. How long was the road after the renovation?
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
